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A B S T R A C T   

Extreme heat is often overlooked as a public health concern in Minnesota, where intraseasonal 
summer variability limits acclimatization to oppressive heat conditions. Specific categories of 
synoptic-scale air masses are linked to summer excess mortality and elevated health risk in the 
Midwestern United States, particularly within urban areas. Between 1948 and 2019, Minnesota's 
four largest urban areas have experienced decreased nighttime cooling, while warmer and more 
humid air masses have increased in frequency at the expense of cooler and drier ones. We used 
downscaled CMIP5 climate projections for 21st-century Minnesota, under RCP4.5 and RCP8.5 
emissions scenarios, to generate daily synoptic classifications and evaluate projected frequency 
and character trends in the highest-risk air masses. Projections show dramatic increases in both 
the frequency and temperature of days within the Dry Tropical category, neither of which have 
changed significantly thus far across Minnesota's historical record. Frequency and duration of 
consecutive-day episodes of excess heat, as identified either by synoptic classifications or by the 
Excess Heat Factor, are likewise expected to increase more substantially in the future than they 
have in the past. Other projected trends, such as rising dew point temperatures and nighttime air 
temperatures, represent continuations of already existing historical trends.   

1. Introduction 

Extreme heat is the leading weather-related cause of human mortality in the United States, exceeding the combined annual 
mortality rates from other causes such as hurricanes, lightning, tornadoes, and floods (Lee, 2013; Luber and McGeehin, 2008); 
however, public perception tends to underestimate the risks associated with extreme heat events due to the lack of physical destruction 
they leave behind compared to other extreme weather events (Luber and McGeehin, 2008). During extreme heat events, increases in 
hospital admissions often extend well beyond the mortality response, as observed in the Chicago heatwave of July 1995, in which over 
700 deaths and over 1000 excess hospital admissions occurred (Semenza et al., 1999). 

There is a gap in our understanding of how cities in northern climates will respond to projected increases in heat events. Most 

* Corresponding author at: Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, 439 Borlaug Hall, 1991 Upper Buford 
Ave, St Paul, MN 55108, USA. 

E-mail addresses: birke111@umn.edu (J.F.H. Birkel), twine@umn.edu (T.E. Twine), liess@umn.edu (S. Liess), larryk@miami.edu 
(L.S. Kalkstein), ssherid1@kent.edu (S. Sheridan).  

Contents lists available at ScienceDirect 

Urban Climate 

journal homepage: www.elsevier.com/locate/uclim 

https://doi.org/10.1016/j.uclim.2022.101307 
Received 28 March 2022; Received in revised form 16 September 2022; Accepted 21 September 2022   

mailto:birke111@umn.edu
mailto:twine@umn.edu
mailto:liess@umn.edu
mailto:larryk@miami.edu
mailto:ssherid1@kent.edu
www.sciencedirect.com/science/journal/22120955
https://www.elsevier.com/locate/uclim
https://doi.org/10.1016/j.uclim.2022.101307
https://doi.org/10.1016/j.uclim.2022.101307
http://crossmark.crossref.org/dialog/?doi=10.1016/j.uclim.2022.101307&domain=pdf
https://doi.org/10.1016/j.uclim.2022.101307
http://creativecommons.org/licenses/by-nc-nd/4.0/


Urban Climate 46 (2022) 101307

2

analyses of synoptic characteristics related to heat have been in cities where heat events are more prevalent or where rare but strong 
heat events have already raised awareness in the public, such as in Chicago (Hondula et al., 2014). In contrast, heat events in the 
Minneapolis-St Paul metropolitan region that are less frequent but expected to increase in the future (Vose et al., 2017; Liess et al., 
2022) would reach a less prepared population. Given the location of this region between the more humid east and more arid west, it is 
unknown whether increases in heat events will be a result of warm, dry airmasses or warm, humid airmasses—and this difference in 
humidity has important implications for heat stress. 

Every location has a unique set of sensitivities in the connections between heat and mortality, and several studies have generated 
predictive algorithms for specific cities or regions (Hayhoe et al., 2010; Sheridan and Kalkstein, 2004). Due to the human body's ability 
to adjust to heat, the same high temperature conditions will have a lesser impact in a more consistently hot location, such as Arizona, 
than in a colder or less consistently hot location like Minnesota (Folkerts et al., 2020). Furthermore, a hot day late in a summer season 
will present less danger than an equally hot day in early summer in the same location due to seasonal acclimatization (Nairn and 
Fawcett, 2014; Sheridan et al., 2009). The severity of a heat event is also influenced by the diurnal temperature range, since nighttime 
cooling can provide relief from a day of excessive heat, and therefore a warmer night following a hot day can exacerbate its adverse 
health impacts (Vanos et al., 2014). Likewise, days of excess heat are typically most harmful when they occur consecutively; the 
impacts of heat upon health are cumulative as heat loads build up (Nairn and Fawcett, 2014). 

The U.S. Midwest has a particularly strong sensitivity in heat-health relationships due to the high intraseasonal variability of its 
regional climate, with both tropical and polar synoptic weather regimes exerting a substantial influence throughout most of the 
seasonal cycle (Kalkstein and Davis, 1989; Sheridan et al., 2009; Sheridan and Dixon, 2017). Relationships between mortality and 
temperature alone have been recognized to be non-linear, particularly in the most extreme cases where multiple risk factors compound 
to produce a deadlier situation (Anderson and Bell, 2009). Therefore, the identification of “weather situations,” based on an ensemble 
of weather elements, can often delineate the potential for heat-stress conditions more successfully. The Spatial Synoptic Classification 
(SSC) employs a range of single-station surface observations to evaluate synoptic-scale atmospheric circulation patterns (Sheridan, 
2002). The SSC then categorizes daily weather conditions under a series of synoptic air mass types, applying location-specific 
climatological thresholds that shift with the seasonal cycle. This system enables patterns of adverse health outcomes to be tied to 
atmospheric circulation behaviors, in which specific synoptic categories or subcategories may be associated with above-baseline 
mortality responses. Applications of the SSC to weather forecasts can therefore aid in predicting and issuing warnings for health- 
threatening weather conditions (Hondula et al., 2014; Kalkstein et al., 2011; Sheridan and Kalkstein, 2004). A key advantage of 
the SSC is its ability to highlight non-uniformities within a changing climate, such as if temperature or other meteorological character 
changes are concentrated within a certain subset of air mass types rather than being evenly distributed across all days. 

While heatwaves are driven by synoptic-scale processes, the urban heat island effect can amplify their impacts locally beyond those 
received by surrounding rural areas (Fischer et al., 2012; Founda and Santamouris, 2017; Habeeb et al., 2015). Unequal access to air 
conditioning is also a critical underlying factor in relative risk of heat-related mortality, along with neighborhood disparities in tree 
cover and quality of construction materials (Harlan et al., 2006). 

Many studies have projected the frequency, severity, and duration of extreme heat events in the U.S. to increase throughout the 21st 
century (Dahl et al., 2019; Hayhoe et al., 2010; Kalkstein and Greene, 1997; Lau and Nath, 2012; Meehl and Tebaldi, 2004). Heat 
events of comparable severity to the historically unprecedented Chicago heatwave of 1995 may impact the Midwest every other year 
by end-century even if carbon emissions are substantially reduced, or up to three times a year if emissions remain high (Hayhoe et al., 
2010). Meanwhile, heat events exceeding historical precedent are expected to become more commonplace, most concentrated in the 
Midwest, Southeast, and Southern Plains (Dahl et al., 2019; Lau and Nath, 2012). Though the impacts of heat upon health are widely 
expected to increase in severity due to climate change, such impacts are already observable: over a third of summer-season heat-related 
deaths that occurred globally between 1991 and 2018 can be attributed to anthropogenic climate change (Vicedo-Cabrera et al., 2021). 

Specifically within Minnesota, observed warming trends are strongest in winter, and this is expected to remain the case throughout 
the 21st century. However, Minnesota's summers are projected to warm up to 4 ◦C by the end of the century, with the greatest 
temperature increases occurring in the northern and central regions of the state (Liess et al., 2022). In light of these climate forecasts, 
and given Minnesota's susceptibility to heat-related health risks, we aim to evaluate trends in health-threatening heat conditions in 
four of Minnesota's urban regions. In examining historical synoptic trends, we partially follow the analyses of Midwestern urban 
centers performed by Vanos et al. (2014), with inclusion of additional urban locations and neighboring rural locations, and under an 
updated version of the SSC. Utilizing newly available dynamically-downscaled climate projections (Liess et al., 2022), we examine the 
continuation of such trends into the middle and late 21st century and additionally evaluate a separate temperature anomaly-based 
metric for excess heat. Rather than simply analyze the Liess et al. dataset, our approach makes use of the SSC to discretize vari-
ables into air mass categories, and thus provide a practical way for risk managers and other people to plan for changes in potentially 
harmful weather events in Minnesota cities. We demonstrate a method, and produce a dataset, that can be used with similar analyses of 
other urban areas to not only compare and contrast changes in variables such as temperature, but in synoptic character of heat events 
projected through the 21st century, particularly in regions that have so far seen limited impacts of heatwaves. 

2. Material and methods 

2.1. Station observations 

Historical temperature records were downloaded from the airport weather stations in Minneapolis-St. Paul, Rochester, Duluth, and 
Fargo-Moorhead from the Midwest Regional Climate Center (MRCC) cli-MATE Online Data Portal (http://mrcc.purdue.edu). These 
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Fig. 1. (a) Locations of weather stations from which historical temperature records were used. Larger markers labeled in bold represent urban 
airport stations. (b) Monthly frequency (percent of total days in each month) of air mass types by location, averaged over 1948–2019, where the air 
mass types are defined as transitions between a single air mass (TR), strong moist tropical (MT+), moist tropical (MT), moist moderate (MM), moist 
polar (MP), dry tropical (DT), dry moderate (DM), and dry polar (DP). 
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represent the four largest metropolitan areas in or partially in Minnesota for which SSC calendars are available and also represent 
spatial variability across Minnesota's climate (Fig. 1a). All four stations are within warm or hot summer humid continental Köppen 
climate regions, with an average annual precipitation gradient from Fargo-Moorhead (M:35 ◦C, N:-31 ◦C) of 610 mm, to Duluth 
(M:32 ◦C, N:-31 ◦C) and Minneapolis-St. Paul (M:35 ◦C, N:-27 ◦C) of about 800 mm, to Rochester (M:34 ◦C, N:-29 ◦C) of 890 mm, 
according to NOWdata from http://weather.gov for 1991–2000 where M (N) is the mean annual extreme maximum (minimum) air 
temperature. Fargo-Moorhead is located in a flat river valley, Duluth is located on the western shore of Lake Superior, Rochester is 
located along a river with gentle hills, and the Minneapolis-St Paul region comprises two major rivers and several lakes. Weather 
stations in Jordan, Grand Meadow, Two Harbors, and Ada were paired with these four urban sites, respectively, in an attempt to 
capture urban-rural distinctions in air mass character. These sites were selected to be fairly near (35–55 km) their respective urban 
sites, while covering an equivalent period of record. Thus, rural sites would be presumably close enough to experience the same daily 
synoptic conditions as their urban counterparts, while simultaneously far enough to avoid any potential urban heat island (UHI) 
influence. Worth noting, however, are the distinctions in how each airport station is situated relative to its respective urban area. The 
MSP airport lies within the Minneapolis-St. Paul metropolitan area, aligned with its innermost suburban ring, and has been recognized 
for the strength of its UHI signal relative to other metropolitan locations outside of the downtown areas of Minneapolis and St. Paul 
(Smoliak et al., 2015). The other three airports lie outside or along the edges of their respective urban environments, none of which are 
as physically expansive as Minneapolis-St. Paul. These urban stations may therefore experience less pronounced urban heat island 
effects. 

Daily minimum and maximum air temperatures were available from 1948 to 2019 in all eight locations, while hourly air tem-
peratures and dew point temperatures were only available from the four urban locations. Therefore, for consistency, daily minima and 
maxima were used in all urban-rural air mass character comparisons. In urban-only synoptic evaluations, consistent 12-h-interval 
observations from 3:00 and 15:00 Central Standard Time were applied instead, with the temperature difference between these 
times functioning as an alternate expression of diurnal temperature range. The use of 12-h synoptic observations offers more specific 
insight into the behavior of the diurnal cycle under different air mass types than a reliance on an assumption of minimum temperatures 
occurring at night or early morning. Given the physiological relief from hot days provided specifically by cool nights, this distinction 
has important implications for health (Vanos et al., 2014). 

2.2. Observed synoptic classifications 

The Spatial Synoptic Classification (SSC) categorizes weather situations under a series of air mass types, incorporating surface 
observations of air temperature, dew point temperature, cloud cover, wind speed and direction, and pressure at six-hour intervals to 
provide a holistic representation of daily atmospheric conditions over a location (Kalkstein and Greene, 1997; Sheridan, 2002). The 
SSC features seven main air mass categories: Dry Polar (DP), Dry Moderate (DM), Dry Tropical (DT), Moist Polar (MP), Moist Moderate 
(MM), Moist Tropical (MT), and transition days (TR). These categories serve as an extension from the four traditional Bergeron (1930) 
air mass categories (cP, cT, mP, mT), providing more versatility for health-related and other climatological studies, with greater 
representation of the modifications that air masses can undergo as they advect over land or water surfaces outside their source regions 
(Sheridan, 2002). The most recent version of the SSC algorithm (i.e., SSC3; http://sheridan.geog.kent.edu/ssc3.html) includes a 
subtype of each classification to denote more extreme conditions. For example, MT+ is used to classify days on which apparent 
temperatures exceed the local MT seed-day mean by at least one standard deviation (Sheridan et al., 2009). Air masses are classified 
daily for a given location through the use of seed days, which exemplify typical weather conditions that each air mass type would bring 
to that location at a given time of season–a climatological norm–based on the 1981–2010 period. 

Most health-related studies focus on the DT and MT+ categories as they represent the hottest summer weather conditions occurring 
at a given location, distinguished from each other by the relative presence or absence of humidity (L. S. Kalkstein and Greene, 1997; 
Sheridan and Kalkstein, 2004; Vanos et al., 2014). Due to their lower dew points, and therefore lower cloud cover and specific heat, DT 
air masses are typically able to reach the highest temperatures of any synoptic type, while facilitating a wider diurnal range than MT or 
MT+ air masses. Although the designation of MT+ and DT as oppressive types is not universal, the use of MT+ and DT in representing 
higher-risk conditions is well-established in synoptic heat-health studies of the Midwest (Hayhoe et al., 2010; L. S. Kalkstein and 
Greene, 1997; Sheridan et al., 2009; Vanos et al., 2014) and is therefore applied here. Daily SSC calendars were downloaded for 
1948–2019 from http://sheridan.geog.kent.edu/ssc3.html for the four urban airport stations. For purposes of this analysis, all “plus” 
types were aggregated with their parent types except for MT+, due to its distinct significance from MT in heat-health studies. Rare 
cases of even more extreme MT++ days were likewise aggregated with MT+. 

2.3. Simulated synoptic classifications 

We used the SSC algorithm to classify synoptic conditions for both historic and future time periods to evaluate whether projected 
changes to Minneapolis-St Paul climate can be linked to changes in the occurrences of DT and MT air masses. Liess et al. (2022) used 
the Weather Research and Forecast (WRF) model to dynamically downscale eight general circulation models (GCMs) to a 10 km 
horizontal resolution over Minnesota. WRF output data were provided for two emissions scenarios, RCP4.5 and RCP8.5, and for three 
time periods: 1980–1999, 2040–2059, and 2080–2099. These scenarios are referred to as HIST, MID, END4.5, and END8.5. Only the 
RCP4.5 results are given for MID as the RCP4.5 and RCP8.5 scenarios diverged mostly by the end of the 21st century. Linear-scaling 
bias adjustments were applied to temperature and precipitation output with gridded climate normals from PRISM Climate Group (Daly 
et al., 2017; Liess et al., 2022). Other meteorological output was not bias-adjusted due to the limited availability of observational data. 
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WRF data were analyzed from a single grid cell that was selected to represent the location of the Minneapolis-St Paul International 
airport station (Fig. S1). Given the coarseness of the 10 km spatial resolution remaining after downscaling, no attempt was made to 
distinguish between urban and rural areas. Representation of land cover is limited in both the WRF and GCM simulations, and it is 
outside the scope of this work to simulate future urban growth and development that might influence land-air interactions. 

Required inputs for the SSC algorithm were generated using simulated air temperature, dew point temperature, and horizontal 
wind vectors at 6-h intervals (3:00, 9:00, 15:00, and 21:00 in local Central Standard Time). A simple linear function of simulated daily 
mean air temperature along with climatological mean values downloaded from MRCC (http://mrcc.purdue.edu) were used to produce 
daily sea level pressure values. Daily values of cloud cover were estimated from simulated incoming shortwave radiation. Wind di-
rection was unavailable from the downscaled outputs of the bcc-csm1–1 and MIROC5 GCMs, as well as CNRM-CM5 in the END8.5 
scenario. The primary consequence of these data constraints was that the lack of pressure variability within each day, as well as the 
lack of shifts in wind direction under some GCM-scenario combinations prevented synoptic transitions from being accurately calcu-
lated in the algorithm. As a result, the TR category was removed from the list of possible synoptic categories and every day that would 
have been designated as TR was instead assigned the next closest fitting air mass type. 

Eight 20-year SSC calendars were produced for each climate scenario–each one derived from a different downscaled GCM resulting 
in 160 model-years per scenario. We also produced a single 20-year SSC calendar from the average of all downscaled GCMs; however, 
this overly moderated the meteorological variability relative to observations and resulted in an overrepresentation of moderate 
synoptic types like DM and near-exclusion of rarer and more extreme types like MT+. 

2.4. Air mass trends 

We focus our analysis on four types of SSCs: DP, DT, MT, and MT+. While DT and MT+ are generally the most oppressive and 
health-threatening types in the Midwest, MT is also sometimes associated with above-baseline summer mortality and morbidity. DP 
days may provide cooling relief in Midwestern summers (Vanos et al., 2014), and we wanted to evaluate whether MSP might see fewer 
DP days in future summers. Here we define the summer season as May 20 to September 10 to accommodate the potentially expanding 
seasonal spread of oppressive conditions under climate change. 

2.5. The Nairn-Fawcett excess heat factor 

There is no universal standard for defining heatwaves and many location-specific heatwave metrics exist (Habeeb et al., 2015; 
Nairn and Fawcett, 2014; Sheridan and Dixon, 2017; Watts and Kalkstein, 2004). These may capture different events consequential to 
health that might not be fully captured by MT+ or DT air mass classifications. For example, the well-documented Chicago heatwave of 
July 1995 (Hayhoe et al., 2010; Meehl and Tebaldi, 2004) peaked under DT and MT+ conditions from July 12–15, but was extended by 
additional MT days on July 11, 16, and 17. 

We classified heatwave days according to the Excess Heat Factor (EHF) of Nairn and Fawcett (2014). The EHF identifies heat events 
that pose a significant risk to health, reflecting location-specific climatological norms, cumulative impacts of heat, influences of 
nighttime alongside daytime temperatures, and the effects of acclimatization. Since its introduction, further studies have evaluated its 
performance in predicting health outcomes, with promising results in Australia and elsewhere (Loridan et al., 2016; Nairn et al., 2018; 
Scalley et al., 2015). A positive EHF value indicates that the average daily mean temperature (DMT) exceeds the 95th-percentile DMT 
for a given location (T95). The magnitude of this exceedance of T95 (significance index, or EHIsig) is then multiplied by the exceedance 
of the previous thirty days' average DMT to represent acclimatization (acclimatization index, or EHIaccl). Early-season heat events tend 
to exceed their preceding weeks' temperatures by greater margins than late-season heat events, and thus often result in the greatest 
excess mortality outcomes (Nairn and Fawcett, 2014; Sheridan et al., 2009). Any day within a three-day period flagged as a heat event 
is counted as a heatwave day even if its individual DMT does not exceed T95. Conversely, a day whose DMT exceeds T95 is not counted if 
it does not fall within a positive-EHF three-day period. The same qualifications apply to severe heatwave days, or days within three-day 
periods whose EHF exceeds the 85th-percentile EHF value. 

Nairn and Fawcett (2014) define DMT as the average of daily maximum and daily minimum temperature. In order to reflect the 
distinct health impacts of a hot night following a hot day, maximum and minimum temperatures are selected within 24-h periods 
beginning and ending at 9:00 rather than midnight, in accordance with Australian weather data formatting conventions. In this 
analysis, DMT was defined as the average of 12-h temperatures at 15:00 and the following 3:00. This follows the air mass temperature 
trend analyses outlined above, but reconfigured so that nighttime temperatures follow daytime temperatures rather than aggregating 
times by calendar date. 

Length of heatwave season was defined as the duration from each year's first heatwave day to its last (Habeeb et al., 2015). For each 
year, heatwave intensity was expressed as the mean exceedance of T95 on heatwave days. Heatwave duration was defined as the 
average number of heatwave days occurring consecutively per heat event, regardless of whether all of them exceed T95 individually, 
while heatwave frequency was defined as the number of these events per year. 
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Table 1 
Summary statistics for urban sites' air mass frequency (days per season), air temperature (Ta; ◦C), and dew point temperature (Td; ◦C) trends over 1948–2019 within the May 20–September 10 season. 
Linear regression slopes are expressed as decadal rather than yearly changes. Bold slope and R2 values indicate p < 0.05 significance.    

All DP DT MT MT+

Mean Slope R2 Mean Slope R2 Mean Slope R2 Mean Slope R2 Mean Slope R2 

Minneapolis Frequency – – – 11.1 ¡1.079 0.134 6 0.164 0.003 26.1 1.691 0.163 2 0.152 0.023 
3:00 Ta 17.3 0.297 0.270 12.1 0.178 0.065 20.1 0.12 0.01 20 0.167 0.144 24.3 0.085 0.012 
3:00 Td 13.6 0.184 0.121 8.5 0.046 0.004 14.1 − 0.005 0 16.9 0.099 0.060 18.9 0.117 0.016 
15:00 Ta 25.4 0.055 0.009 21.2 − 0.043 0.007 32.3 − 0.195 0.048 28.2 − 0.046 0.017 33.1 − 0.073 0.013 
15:00 Td 13.8 0.097 0.03 8 − 0.097 0.015 13.7 − 0.392 0.055 18.1 − 0.023 0.002 19.9 − 0.117 0.018 

Rochester Frequency – – – 13.5 − 0.01 0 4.6 − 0.529 0.035 27 1.801 0.152 1 0.061 0.007 
3:00 Ta 15.6 0.143 0.092 10.6 0.192 0.112 17.8 − 0.054 0.002 18.8 0.013 0.001 23.4 − 0.053 0.006 
3:00 Td 13.2 0.211 0.145 8.3 0.173 0.070 13.1 − 0.175 0.011 16.8 0.106 0.065 19.7 0.077 0.009 
15:00 Ta 24.4 − 0.082 0.02 20.7 − 0.016 0.001 31.2 − 0.102 0.012 27.4 ¡0.139 0.141 32.6 − 0.08 0.014 
15:00 Td 14.6 0.257 0.179 9.2 0.282 0.116 13.7 ¡0.413 0.061 18.9 0.14 0.100 20.9 0.013 0 

Duluth Frequency – – – 19.8 ¡1.128 0.109 2.2 − 0.017 0 12.8 1.188 0.145 0.3 0.021 0.005 
3:00 Ta 12.8 0.259 0.250 8.5 0.223 0.187 15.9 − 0.119 0.008 17.5 0.081 0.022 21.4 − 0.269 0.068 
3:00 Td 10.2 0.196 0.124 6 0.141 0.050 10.6 − 0.027 0 15.2 0.109 0.031 16.7 − 0.278 0.044 
15:00 Ta 21.2 0.161 0.079 18.5 − 0.004 0 29.4 − 0.148 0.023 26.6 ¡0.17 0.092 30.5 − 0.195 0.042 
15:00 Td 11.5 0.166 0.096 7 0.086 0.016 11.3 − 0.089 0.002 17.2 − 0.087 0.02 18.1 − 0.328 0.04 

Fargo Frequency – – – 16.9 − 0.389 0.021 6 − 0.331 0.015 21.1 1.034 0.086 1 0.088 0.018 
3:00 Ta 15.2 0.203 0.179 10.3 0.222 0.181 18.2 0.094 0.008 18.8 0.108* 0.063* 23.2 0.118 0.018 
3:00 Td 12.1 0.172 0.114 8 0.157 0.068 12.5 − 0.048 0.001 16.1 0.077 0.022 18.6 0.321 0.061 
15:00 Ta 25 0.042 0.005 21.4 0.108* 0.046* 32.5 − 0.132 0.027 28 ¡0.143 0.106 33.3 − 0.07 0.005 
15:00 Td 12.7 0.164 0.090 8.1 0.17 0.055 12.7 − 0.035 0.001 17.6 0.031 0.003 19.9 − 0.149 0.017  

* Fargo's daily maximum DP temperatures increased with p < 0.05 significance, while DP temperatures at 15:00 did not. Conversely, Fargo's MT temperatures at 3:00 increased with p < 0.05 sig-
nificance, while daily minimum MT temperatures did not. Statistical significance between daily and hourly datasets matched for all other trends. 
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Table 2 
Summary statistics for paired urban and rural sites' trends in diurnal temperature range (◦C) over 1948–2019 within the May 20–September 10 season. Linear regression slopes are expressed as decadal 
changes. Bold slope and R2 values indicate p < 0.05 significance.   

All DP DT MT MT+

Mean Slope R2 Mean Slope R2 Mean Slope R2 Mean Slope R2 Mean Slope R2 

Minneapolis 11.1 ¡0.239 0.355 11.5 ¡0.255 0.156 14.2 ¡0.221 0.083 10.8 ¡0.206 0.367 11.2 − 0.054 0.005 
Jordan 12.5 − 0.156 0.037 13.2 ¡0.29 0.077 15.3 − 0.116 0.011 11.8 − 0.108 0.025 11.9 0.002 0 
Rochester 11.7 ¡0.288 0.352 12.5 ¡0.279 0.267 15.4 − 0.041 0.003 11.2 ¡0.214 0.427 11.6 − 0.061 0.014 
Grand Meadow 11.9 − 0.091 0.043 12.4 ¡0.194 0.094 13.8 0.085 0.009 11.3 0.008 0 11.9 − 0.102 0.021 
Duluth 11.7 ¡0.134 0.129 12.7 ¡0.244 0.242 15.8 − 0.085 0.01 12.2 ¡0.301 0.308 12 − 0.077 0.004 
Two Harbors 11.4 ¡0.274 0.409 11.6 ¡0.243 0.207 16.1 ¡1.033 0.343 11.7 ¡0.606 0.350 13.9 − 0.299 0.017 
Fargo 13 ¡0.149 0.121 13.9 ¡0.063 0.018 16.7 ¡0.21 0.071 12.2 ¡0.193 0.231 13.4 − 0.315 0.085 
Ada 13.8 ¡0.28 0.248 14.3 ¡0.361 0.288 16.7 ¡0.418 0.193 13 ¡0.146 0.075 14.4 − 0.34 0.076  
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3. Results 

3.1. Observed SSC analysis of urban areas 

3.1.1. Air mass frequency trends 
All four urban sites experience both polar types and both moderate types throughout the year, with DP and MP peaking in winter 

and DM and MM peaking in summer (Fig. 1b). DT and MT are present from March to November, though to varying degrees. DT tends to 
peak in spring, though never exceeding 8% of any month's days. MT is far more common in all locations, especially in summer, with 
MT+ occurring most often in Minneapolis. Transition days occur about 10–15% of the time in each location throughout the year. 

The frequency of MT days has significantly increased in all four cities, ranging from 1.0 additional days decade− 1 in Fargo to 1.8 
days decade− 1 in Rochester (Table 1). In all cities except Rochester, the increase in MT has occurred along with a decrease in DP 
frequency. This is consistent with trends found in other studies in the Midwest (Knight et al., 2008; Vanos et al., 2014). TR frequency 
has roughly halved in all locations, aligning with a more geographically widespread downward trend (Kalkstein et al., 1998; Knight 
et al., 2008). 

3.1.2. Air mass character trends 
Diurnal temperature range has decreased in all locations (Table 2) as a result of increasing daily minimum air temperatures 

everywhere except Grand Meadow. It decreased more in southern urban sites (i.e., Minneapolis-St Paul and Rochester) than in their 
rural counterparts (i.e., Jordan and Grand Meadow), while it decreased more in northern rural sites (i.e., Ada and Two Harbors) than in 
their urban counterparts (i.e., Fargo-Moorhead and Duluth). Daily minimum air temperature has increased the most in Minneapolis, 
followed by the urban-rural pair of Duluth and Two Harbors, by 0.30, 0.28, and 0.24 ◦C 10 yr− 1, respectively. Daily maximum air 
temperatures show no statistically significant trends except for a 0.14 ◦C 10 yr− 1 increase in Duluth and a 0.18 ◦C 10 yr− 1 decrease in 
Ada (Table 1). Both the 3:00 and 15:00 dew point temperatures increased by 0.1 to 0.25 ◦C 10 yr− 1 in all urban locations, which is 
consistent with the increase in MT airmass frequency. 

These urban trends do not occur uniformly over all air masses. MT afternoon temperatures actually decreased over the period of 
record, while nighttime temperatures increased in Minneapolis and Fargo by 0.17 and 0.11 ◦C 10 yr− 1. MT dewpoint temperatures 
increased in Rochester at both times, while only in Minneapolis at night. Other than a large decrease in afternoon dewpoint tem-
peratures of − 0.41 ◦C 10 yr− 1 in Rochester, there are no statistically significant trends in DT air or dewpoint temperatures. Nighttime 
air temperatures have increased in DP airmasses at all urban sites, and Rochester and Fargo have also had increases in dewpoint 
temperatures at both 3:00 and 15:00. MT+ air masses were too infrequent to show any statistically significant trends. 

3.1.3. Consecutive day analysis 
Because consecutive days of oppressive heat conditions exert a cumulative negative impact on health (Anderson and Bell, 2009; 

Hajat et al., 2006; Nairn and Fawcett, 2014), we quantified occurrences of three or more consecutive days under either DT (and DT+) 
or MT+ (and MT++) air masses at the four urban sites. We found no statistically significant trends in the frequency of these 3+ day 
episodes (Table 3), and at least half of the years included no such episodes at all. Duluth, where DT is especially rare and MT+ is 
virtually nonexistent, only had 11 DT/MT+ episodes over the entire period (1961 contained two episodes). Minneapolis experienced 
61 episodes, including 15 years featuring at least two (1976 contained six episodes). Rochester and Fargo had 29 and 49 episodes, 
respectively. Minneapolis's episodes grew longer over the period, with annual mean duration increasing by 1.6 days over the 
1948–2019 period (from 3.4 to 5.0 days per event), while Rochester's grew shorter by 2.3 days over the period. The longest recorded 
episodes in Minneapolis and Rochester lasted nine days each, occurring in 2012 and 1955, respectively. The longest episodes recorded 
at Fargo and Duluth occurred in May 1980 and lasted ten and five days, respectively. 

3.1.4. Heatwave behaviors 
As defined by the Excess Heat Factor (EHF) criteria, heatwaves show virtually no trends in frequency or characteristics at our sites 

(Table 4), and the length of the heatwave season was highly variable, with some years featuring only a single three-day heatwave or 
none at all, while the longest season lasted 131 days in Minneapolis and Rochester in 1959. Heatwaves lasted an average of 5.0 to 5.7 
days and occurred an average of 3.5 to 4.0 times per year, totaling 20 to 22 days in an average season. The longest average heatwave 
ranged from 7.5 days in Fargo to 8.9 days in Rochester. Only two years in Duluth featured a heatwave lasting 15 days or more, and only 
three in Fargo; meanwhile, Minneapolis experienced six such years and Rochester experienced ten. Duluth shows an increasing trend in 
the number of heatwave days, adding 1.3 heatwave days 10 yr− 1 (p < 0.1). 

Table 3 
Summary statistics for urban sites' trends in frequency (occurrences per summer) and duration (days per occurrence) of consecutive runs of 3 or more 
MT+/DT days over 1948–2019 within the May 20–September 10 season. Linear regression slopes are expressed as decadal rather than yearly 
changes. Bold slope and R2 values indicate p < 0.05 significance.   

Minneapolis Rochester Duluth Fargo 

Mean Slope R2 Mean Slope R2 Mean Slope R2 Mean Slope R2 

Consecutive run frequency 0.8 0.027 0.002 0.4 0.013 0.001 0.2 0.001 0 0.7 − 0.014 0.001 
Consecutive run duration 4.2 0.221 0.128 4.2 ¡0.32 0.245 3.3 − 0.117 0.143 3.6 − 0.085 0.027  
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Across all heatwave days in each location, MT was the most represented air mass, ranging from 37% of heatwave days in Fargo to 
49% in Rochester (Table 5). DM was the second most represented in all cities except Minneapolis, where it came in a close third behind 
DT. TR days accounted for 7–10% of heatwave days in all four locations. Even MM, typically not a particularly warm type, covered 
10% of heatwave days in Duluth, where the traditional oppressive MT+ and DT types were least frequent. For severe heatwave days 
only, MT+ and DT were better represented, covering 62% of such days in Minneapolis, roughly half of all severe heatwave days in 
Rochester and Fargo, and less than a quarter of them in Duluth, where nearly half were still MT. 

3.2. Simulated SSC analysis of MSP region 

A comparison of model-simulated SSC in the grid cell comprising the Minneapolis-St Paul (MSP) metropolitan region with SSC 
calculated from the MSP international airport historic record is provided in Supplementary Material (section S1). Simulated SSCs will 
not have any TR days as transitions are periods of rapid surface pressure change and surface pressure was not available in the model 
output; therefore, categories other than TR will be amplified in frequency in the model analysis. Even though air temperature in the 
Liess et al. dataset was bias-corrected, differences will occur between historic records and model output because of the coarseness of 
the model grid cell (i.e., 10 km) among other issues (e.g., errors in historic records, uncertainty in the dataset used for bias correction). 
These uncertainties propagate to the future projections, however, our aim in this study is to use the Liess et al. dataset as it is provided. 

3.2.1. Air mass frequency trends 
SSC calendars generated from the four simulated climate scenarios demonstrated a 21st-century shift toward more frequent tropical 

air mass types and less frequent polar types. DT had the greatest net gain in frequency under both RCP4.5 and RCP8.5, while DM had 
the greatest net loss (Table 6, Fig. 2). However, DM remained the most common summer air mass except under END8.5, where it was 
narrowly outnumbered by MT. Though overrepresented already in the historical simulations relative to the observed record, DT 

Table 4 
Summary statistics for urban sites' trends in positive-EHF heat wave events over 1948–2019. T95 indicates the 95th-percentile temperature threshold 
(◦C), while EHF85 indicates the 85th-percentile EHF value threshold (◦C2). Frequency and duration are expressed as in Table 3.3. Heat wave season 
starting dates are expressed as Julian dates. Linear regression slopes are expressed as decadal changes. Bold slope and R2 values indicate p < 0.05 
significance.   

Minneapolis Rochester Duluth Fargo 

T95 25.8 24.2 21.7 24.7 
EHF85 17.8 15.7 17.4 18.1  

Mean Slope R2 Mean Slope R2 Mean Slope R2 Mean Slope R2 

Heatwave frequency 3.5 0.154 0.025 3.9 − 0.063 0.004 3.7 0.132 0.019 4 − 0.028 0.001 
Heatwave duration, annual mean 5.8 − 0.073 0.007 5.5 − 0.14 0.032 5.4 0.074 0.009 5 − 0.007 0 
Heatwave duration, annual 

maximum 8.6 0.096 0.002 8.9 − 0.37 0.027 7.8 0.423 0.062 7.5 − 0.003 0 
Heatwave season length 52.9 2.225 0.02 61.3 − 0.773 0.002 48.8 2.948 0.044 56.4 1.407 0.011 
Heatwave season starting date 174.2 − 0.622 0.004 169.5 0.664 0.004 179.6 − 1.244 0.016 176.4 − 0.032 0 
Exceedance of T95 on heatwave days 0.8 − 0.029 0.016 0.8 − 0.038 0.028 0.8 0.039 0.03 0.8 − 0.037 0.031 
Exceedance T95 on severe heatwave 

days 3.1 0.062 0.04 2.9 0.003 0 3.3 0.052 0.033 3.1 − 0.013 0.001 
Number of heatwave days 20.8 0.884 0.018 22 − 0.896 0.02 19.9 1.316 0.049 20.7 0.037 0 
Number of severe heatwave days 3.8 − 0.083 0.002 4 − 0.296 0.016 3.7 0.021 0 3.5 − 0.225 0.016  

Table 5 
Allocation of daily SSC categories within all positive-EHF heat wave days and within severe heat wave days only. Values are expressed as total days 
over 1948–2019 and as percentages of each location's heat wave or severe heat wave day.   

DP DM DT MP MM MT MT+ TR 

Minneapolis All heatwave days 0 274 299 1 35 642 139 161 
(0.0%) (17.7%) (19.3%) (0.1%) (2.3%) (41.4%) (9.0%) (10.4%) 

Severe heatwave days 
0 16 105 0 0 70 73 24 
(0.0%) (5.6%) (36.5%) (0.0%) (0.0%) (24.3%) (25.3%) (8.3%) 

Rochester 

All heatwave days 
1 310 229 0 67 786 73 139 
(0.1%) (19.3%) (14.3%) (0.0%) (4.2%) (49.0%) (4.5%) (8.7%) 

Severe heatwave days 
0 15 88 0 1 110 46 29 
(0.0%) (5.2%) (30.4%) (0.0%) (0.3%) (38.1%) (15.9%) (10.0%) 

Duluth 

All heatwave days 
12 501 109 4 148 554 25 110 
(0.8%) (34.2%) (7.5%) (0.3%) (10.1%) (37.9%) (1.7%) (7.5%) 

Severe heatwave days 
1 56 45 0 5 130 17 16 
(0.4%) (20.7%) (16.7%) (0.0%) (1.9%) (48.1%) (6.3%) (5.9%) 

Fargo 

All heatwave days 
5 376 302 1 35 558 70 156 
(0.3%) (25.0%) (20.1%) (0.1%) (2.3%) (37.1%) (4.7%) (10.4%) 

Severe heatwave days 
0 22 97 0 1 70 42 22 
(0.0%) (8.7%) (38.2%) (0.0%) (0.4%) (27.6%) (16.5%) (8.7%)  
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doubled in average frequency from HIST to END8.5, and increased by over 60% under END4.5. While falling short of exceeding MT 
frequency in summer in END8.5, DT showed much more year-to-year and intermodel variability in frequency, with the greatest 
standard deviation among model-years of any air mass in future simulations. DT's frequency increases were proportional within the 
months in which it already occurred under HIST, with almost no expansion beyond the March–October range it already occupied 
(Fig. S3). 

Under all scenarios, it continued to peak in frequency in July and August, which is later than observed historically, (Figs. S4-S6). 
Contrary to DT, DP days were already underrepresented in simulated historical summers and diminished further in frequency in future 
simulations. Most model runs nearly or even completely eliminated DP from July and August under the END8.5 scenario, while 
substantially weakening its presence throughout the rest of the year. MT and MT+ become more frequent in the future scenarios, MT 
increasing by 7 days by MID and END4.5 and continuing to increase 2 additional days by END8.5 (Table 6, Fig. 2). MT+ days increase 
from 1 per summer under HIST to over 5 by END8.5, while DP frequency decreases by about the same amount (Table 6). MT amplified 
its presence in summer, widening its seasonal distribution around a consistent June peak (Figs. S5-S6). Likewise, MT+ expanded into 
earlier spring, later summer, and fall while continuing to feature most prominently in April through June. 

3.2.2. Air mass character trends 
Each air mass type is projected to warm in future scenarios, mainly driven by increases in nighttime air temperatures along with 

increases in dewpoint temperatures (Table S2). As DT is projected to become a more frequent air mass over Minneapolis, the dif-
ferences in relative risk of mortality between a hotter DT day and a cooler DT day may become increasingly relevant. More analysis is 
provided in Supplementary Material (section S2). 

Table 6 
Summary statistics for simulated air mass frequency (days per season), as well as frequency (occurrences per season) and duration (days per 
occurrence) of consecutive runs of 3 or more MT+/DT days. All statistics represent Minneapolis within the May 20–September 10 season over four 
climate scenarios. Air mass frequencies and consecutive run frequencies represent 160 observations, with one value per model-year combination. 
Consecutive run durations represent individual events unaggregated by model or year (number of observations = 160 × number of events per average 
model-year). Bold mean values indicate significant changes from HIST (p < 0.05 by t-test).   

HIST MID END4.5 END8.5 

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

Air mass frequency DP 5.3 5.7 3.8 3.8 2.5 2.3 1.2 1.6 
DM 40.9 14.2 40.7 12.8 34.5 11.6 28.7 10.6 
DT 13.0 12.8 17.6 14.1 21.0 16.0 26.9 20.4 
MP 11.2 7.3 7.2 5.7 7.5 5.0 5.9 4.6 
MM 22.2 16.5 14.8 8.7 18.5 13.5 16.5 11.1 
MT 20.4 9.2 27.7 11.6 26.4 11.0 29.5 11.5 
MT+ 1.0 1.3 2.2 2.5 3.5 3.5 5.3 4.6 

Consecutive runs 
Frequency 1.8 1.9 2.6 2.2 3.1 2.2 3.9 2.4 
Duration 5.3 3.3 5.3 3.3 5.8 4.1 6.5 5.4  

Fig. 2. Distributions of summer (May 20–September 10) air mass frequency by scenario. Whiskers indicate 1.5 × IQR, with outlying values plotted 
individually. Each observation represents one model-year combination (see Table 6 for full description). 
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3.2.3. Consecutive day analysis 
With increases in frequency of MT+ and DT days, there were corresponding increases in episodes of 3 or more consecutive 

oppressive days. All future scenarios featured a significant increase in episode frequency, more than doubling from HIST to END8.5 
(Table 6, Fig. 3). This closely matches the approximate doubling of DT frequency between those same scenarios; DT days remained far 
more common than MT+ days in every scenario and therefore contributed to the bulk of these consecutive episodes. Tails of episode 
length distributions grew longer with time and under higher emissions (Fig. S14), but except under RCP8.5, changes in average episode 
length were minimal and statistically insignificant. Caution should be taken in projecting absolute number of episodes, given the model 
bias toward higher frequency of both MT+ and DT days, therefore an assumption is made that the change in number of episodes is 
realistic. Importantly, while the historical record at MSP shows no trend in frequency of heat episodes, these model simulations project 
a statistically significant increase in the future. 

3.2.4. Heatwave behaviors 
Temperature thresholds above which excess mortality becomes more likely vary by location-specific climatology (Curriero et al., 

2002), but the transfer of this concept to the same location under a changed climate has proven challenging to address (Kinney et al., 
2008). In our future climate scenarios, 95th percentiles of daily mean temperature demonstrated a clear increase, by as much as 4.6 ◦C 
by end-century under RCP8.5 (Table 7), however, the EHF method considers exceedances of this T95 value. Because of bias adjustment 
of the WRF dataset, the HIST average T95 compared well with that of Minneapolis station observations (within 0.5 ◦C; Table 4). 
However, the HIST average EHF85 severity threshold was 4.6◦C2 lower than that of observations, potentially indicating less intra-
seasonal temperature variability. EHF85 only increased in mid-century, instead decreasing slightly in both end-century scenarios. This 
corresponds with future severe heatwave days' exceedances of their own scenarios' respective T95 thresholds, which increased in MID 
and decreased in END8.5 (Table 7). Though this might suggest a lack of increased summer temperature variability in Minneapolis as its 
warming progresses, the EHF85 threshold is not intended primarily as a climatological indicator of summer variability, but instead as a 
predictor of the conditions most likely to produce severe health outcomes. 

Because the EHF quantifies extremes, these results suggest that while these cities are becoming hotter, variability around the T95 
may increase by mid-century but will then decrease by the end of the century. EHF assumes that humans can acclimatize to envi-
ronmental conditions and will be stressed if temperatures exceed this normal, which in this case is the T95 under each emissions 
scenario. Simulated future heatwave seasons maintained nearly identical starting dates and showed no statistically significant 
lengthening or shortening across scenarios (Table 7). This indicates that the hottest 5% of annual weather conditions can be expected 
to continue occupying the same overall time frame within summer rather than becoming biased earlier or later in the year. This 
consistency within the seasonal cycle across scenarios aligns with the consistency of monthly ranges in which hotter air masses, 
especially DT, are projected to occur (Figs. S3-S6), although at increasing frequencies within its monthly range. This study did not 
examine future allocations of air mass types on positive-EHF days, but as DT is projected to grow dramatically in frequency, it occurs 
more regularly in consecutive stretches, and expands its margin above MT+ as the hottest air mass type. It is expected to be particularly 
well-represented within heatwaves. 

Fig. 3. Distributions of annual episode frequency of 3 or more consecutive MT+/DT days by scenario, within the May 20–September 10 season. 
Whiskers indicate 1.5 × IQR, with outlying values plotted individually. Each observation represents one model-year combination (see Table 6 for 
full description). 
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4. Discussion and conclusions 

Despite the large scale of synoptic air masses, Minnesota does not experience heat events equally. By some SSC and EHF-based 
evaluations, the southern cities of Minneapolis and Rochester are more prone to oppressive heat conditions than the northern cities 
of Fargo and Duluth. Under other measures, such as frequency and temperature characteristics of DT airmasses, Fargo more closely 
resembles the southern cities than Duluth. Fargo and Duluth share comparable latitudes, but DT and MT+ occur at Minneapolis-like 
frequencies in Fargo while remaining extremely rare in Duluth, likely due to the cooling from Lake Superior. 

The widening of urban-rural distinctions over the historic record suggests a greater urban heat island influence than climate change 
influence, at least in the two southern urban-rural locations examined here, though the format of this study is insufficient to confirm 
this. Given the greater magnitude in future warming projected by Liess et al. (2022) in northern rather than southern Minnesota, it is 
possible that such patterns are already in effect, thus leaving the southern rural sites least affected by either warming influence. 
Meanwhile, the model-based portion of this study specifically addresses climate change, but does not account for thermal modifica-
tions of air masses at the urban or intra-urban scale, due to the spatial limitations of the WRF model outputs. 

Air mass character distinctions among the four simulated climate scenarios suggest that the dry air mass categories can be expected 
to remain fairly dry until end-century, while the moist categories may become more humid sooner and, aside from MP, accrue little to 
no additional humidity between mid-century and end-century. Under moderate or high emissions, daytime temperatures in MT and 
MT+ are not projected to increase further beyond the levels reached by mid-century. Meanwhile, the bulk of their projected nighttime 
warming is expected to occur later in the century, especially under high emissions. This will result in a MT/MT+ diurnal temperature 
range that widens in mid-century and then narrows in end-century. Some of these results are unexpected, as narrower diurnal ranges 
frequently accompany increased humidity, but in this case the two effects do not show an intuitive temporal alignment. The balance of 
health impacts under greater humidity but minimally warmer nights on MT/MT+ days would need to be examined specifically for 
Minneapolis in order to determine what this implies for mid-century public health risks. Under both end-century scenarios, the 
combination of more humid MT/MT+ days and warmer MT/MT+ nights implies a heightened risk of mortality and morbidity. The 
difference between moderate and high emissions is more substantial for DT days, which are expected to become hotter by mid-century, 
then either stay roughly the same under moderate emissions or heat considerably further under high emissions by end-century. 

The findings of this study suggest that while some changes in extreme heat conditions in Minnesota are already occurring, such as 
the increasing frequency of MT at the expense of DP and the pattern of nighttime warming, other projected trends represent new 
directions in Minnesota's climate not foreshadowed by the previous seven decades, such as the increased frequency and temperature of 
DT days. Because dry heat (DT) and humid heat (MT and MT+) produce different physiological responses among humans, and may 
raise different relative risks of mortality within distinct age demographics, these trends carry important implications for public health 
in Minnesota's urban areas. However, the increasing abundance of DT days raises the question of whether DT is likely to remain a 
useful indicator of health-threatening conditions, as does the increased variability in 15:00 temperatures among DT days under the 
high emissions scenario. If DT begins to rival MT in frequency, as is projected to occur in an average year under END8.5, then DT+ may 
begin to fulfill a similar role to that of MT+, delineating the most extreme subset of DT days from the larger DT pool, possibly too large 
to pose a consistent risk to health. Despite its own relative increases in frequency under all three future scenarios, MT+ will likely 
remain infrequent enough to maintain its status as a meaningful signifier of oppressively hot and humid days that more consistently 
constitute a public health concern. Just as MT days on the warmer or more humid end, which fall short of qualifying as MT+, may still 
be associated with above-baseline mortality, the same may be true for future DT days. This is especially relevant given the continued 
rarity of DT+ in all future scenarios, remaining much less common than MT+ even under END8.5. 

Regardless of the magnitude of the heat-related risk facing each location, Minnesota's urban population centers will need to be 

Table 7 
Summary statistics for simulated trends in positive-EHF heat wave events, defined from each model-scenario combination's simulated future T95 
threshold. All statistics represent Minneapolis over four climate scenarios. T95 indicates the 95th-percentile temperature threshold (◦C), while EHF85 
indicates the 85th-percentile EHF value threshold (◦C2); means and standard deviations for these summarize eight values, one from each model- 
scenario. Heat wave frequencies, heat wave season lengths, heat wave season starting dates (Julian date), number of heat wave days, and number 
of severe heat waves represent 160 observations, with one value per model-year combination. All other rows represent individual days or events 
unaggregated by model or year (number of observations = 160 × number of days or events per average model-year). Bold mean values indicate 
significant changes from HIST (p < 0.05 by t-test).   

HIST MID END4.5 END8.5 

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

T95 26.3 1.1 28.2 1.5 29.0 1.3 30.9 2.2 
EHF85 13.2 5.0 16.3 5.1 11.6 3.0 11.5 2.7 
Heatwave frequency 3.3 1.9 3.5 1.7 3.1 1.6 3.0 1.5 
Heatwave duration 6.6 5.1 6.1 4.1 6.9 5.5 7.0 5.8 
Heatwave season length 47.2 29.3 51.5 28.7 45.1 28.7 42.3 27.5 
Heatwave season starting date 178.2 20.6 176.5 23.1 176.7 20.8 178.7 18.7 
Exceedance of T95 on heatwave days 0.9 1.8 1.0 2.0 0.9 1.6 0.9 1.6 
Exceedance of T95 on severe 

heatwave days 2.8 1.8 3.1 1.7 2.6 1.4 2.5 1.4 
Number of heatwave days 21.6 15.3 21.4 11.1 21.3 13.9 21.1 13.6 
Number of severe heatwave days 3.8 4.9 3.8 4.2 3.9 4.4 4.0 4.0  
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prepared to address the health concerns associated with the growing frequency, duration, and intensity of extreme heat events. Such 
preparations will need to draw from a thorough understanding of the unique sensitivities of each city population's health responses to 
heat. This can be accomplished through predictive algorithms (Hayhoe et al., 2010; Sheridan and Kalkstein, 2004) or other relative 
risk-based assessments (Curriero et al., 2002; Kalkstein et al., 2018), which can then be applied to future climate projections for an 
urban location (Sheridan et al., 2012). A critical component of local heat-health evaluations is the identification and quantification of 
disparities in health outcomes based on age, race, income, and other demographics. This can then facilitate more targeted “cool cities 
solutions” efforts toward specific neighborhoods or populations where vulnerabilities are greatest (de Guzman et al., 2020). 

Minnesota has long been a leader in climate action planning, and to meet the Executive Order (19–37) to reduce statewide 
greenhouse gas emissions to levels at least 80% below 2005 levels by 2050 (http://climate.state.mn.us), communities are asking for 
high resolution climate projections to develop their mitigation and adaptation action plans. Future work will involve creating user- 
friendly interfaces for the dataset analyzed in this study (Liess et al., 2022) and updates to our projections with downscaled CMIP6 
models for the urban-rural paired sites and state of Minnesota. 
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